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ABSTRACT 
 

 
Rational drug design is a powerful method in which new and innovative therapeutics can 
be designed based on knowledge of the biological target aiming to provide more 
efficacious and responsible therapeutics. Understanding aspects of the targeted biological 
agent is important to optimize drug design and preemptively design to slow or avoid drug 
resistance. Chagas disease, an endemic disease for South and Central America and 
Mexico is caused by Trypanosoma cruzi, a protozoan parasite known to consist of six 
separate genetic clusters or DTUs (discrete typing units). Chagas disease therapeutics are 
problematic and a call for new therapeutics is widespread. Many researchers are working 
to use rational drug design for developing Chagas drugs and one potential target that 
receives a lot of attention is the T. cruzi trans-sialidase protein. Trans-sialidase is a 
nuclear gene that has been shown to be associated with virulence. In T. cruzi, trans-
sialidase (TcTS) codes for a protein that catalyzes the transfer of sialic acid from a 
mammalian host coating the parasitic surface membrane to avoid immuno-detection. 
Variance in disease pathology depends somewhat on T. cruzi DTU, as well, there is 
considerable genetic variation within DTUs. However, the role of TcTS in pathology 
variance among and within DTU’s is not well understood despite numerous studies of 
TcTS. These previous studies include determining the crystalline structure of TcTS as 
well as the TS protein structure in other trypanosomes where the enzyme is often 
inactive. However, no study has examined the role of natural selection in genetic 
variation in TcTS. In order to understand the role of natural selection in TcTS DNA 
sequence and protein variation, we sequenced 540 bp of the TcTS gene from 48 insect 
vectors. Because all 48 sequences had multiple polymorphic bases, we examined cloned 
sequences from two of the insect vectors. The data are analyzed to understand the role of 
natural selection in shaping genetic variation in TcTS and interpreted in light of the 
possible role of TcTS as a drug target.  
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Chapter 1:  Introduction to Chagas 

A Brief History of Chagas Disease and Control Efforts  

 Chagas disease was first described in 1909 by its namesake Dr. Carlos Chagas, 

and his description remains one of the most complete initial descriptions of any tropical 

disease [1]. Carlos Chagas was able to identify the infecting parasite, the vector mode of 

transmission, possible mammalian host species, and clinical symptoms.  Despite the 

initial complete description, over a 100 years later Chagas disease remains one of the 

most impactful neglected diseases in Latin America [1]. As well, the burden of Chagas 

continues to grow and with the modern mobility of humans, Chagas exists globally, with 

an estimated 8 to 10 million people infected worldwide [2]. 

  The protozoan family Trypanosoma contains pathogenic and non-pathogenic 

species [3] including Trypanosoma cruzi, the causative agent of Chagas Disease, and 

Trypanosoma brucei, the etiological agent of African Sleeping Sickness. The main 

transmission mode for Chagas is through insect vectors of the subfamily Triatominae [4]. 

The T. cruzi life cycle is often split into two phases: the insect vector cycle and the 

mammalian host cycle. The vector cycle includes the parasite being introduced to the 

vector through a blood meal of an infected mammal host, where the parasite is taken up 

as trypomastigotes  [5]. Once inside the insect, the parasite progresses to the midgut as an 

epimastigote, where it proliferates, eventually progressing to the hindgut as metacyclic 

trypomastigote [5]. When the triatomine takes a subsequent blood meal, the parasite 

passes from the hindgut and is deposited in the feces onto the skin of the mammal blood 

source. This marks the transition from the insect vector and to the pathogenic human 
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cycle where the metacyclic trypomastigotes may enter the bite-wound site or through a 

mucous membrane into the host bloodstream. Once a mammal is infected the 

trypomastigotes enter cells, and transform into amastigotes which continue to proliferate 

within cells of infected tissues [5].  

 Understanding the parasite life-cycle allows for two distinct paths for managing 

the impact and reach of Chagas disease, one being through vector control. The second 

path, the topic of this thesis, is exploring possible pharmacological advancements 

specifically targeting the parasite within mammalian hosts through new drugs. 

Vector control has been a primary method for reducing Chagas disease in many 

of the endemic countries in South and Central America and Mexico and has been 

especially effective in the South American countries where large multidisciplinary efforts 

were made. One large effort to reduce Chagas transmissions was the Southern Cone 

Initiative which was a coordinated effort between six South American countries 

(Argentina, Bolivia, Brazil, Chile, Paraguay, and Uruguay) by the World Health 

Organization (WHO) [6]. One of the main goals of the Southern Cone Initiative was to 

eradicate the main insect vector for the region, Triatoma infestans, largely through 

insecticide spraying of infested and at-risk dwellings [7]. The initiative was considered 

successful in most of the Southern Cone countries, drastically reducing populations of T. 

infestans and thus effectively reducing vector borne transmission and the associated 

economic and societal burdens of Chagas in these countries [8].  
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 However, while successful, the Southern Cone Initiative does have several 

issues that provide reservations to its long term effect and future direction. One of the 

largest issues that needs to be addressed is possible long term effects on human or 

environmental health from the widespread insecticide use. Over 2 million houses were 

sprayed with insecticides ranging from chlorinated hydrocarbons to pyrethoids. 

Additionally in some regions insecticide laden paints were used outside and inside houses 

[7]. The most commonly used insecticide was lindane, a chlorinated hydrocarbon, the 

safety of which in agriculture and pharmacology has been widely debated. This has 

resulted in the chemical being banned, except for occasional pharmacological 

applications (e.g., third line treatment for lice), in over 50 countries including the United 

States [9]. Disregarding the possible benefits for reducing vector transmission of Chagas 

disease, the human toxicity and environmental pollution associated with lindane and 

other insecticides should be considered when evaluating their costs and benefit, in 

Chagas vector control. 

 Other potential challenges of the Southern Cone Initiative include the 

reemergence of T. infestans populations. In regions where T. infestans was originally 

endemic without recurrent insecticide spraying the vector is able to repopulate areas 

where it was previously removed [10]. This not only undermines the goal of the initiative, 

but it also may be a mechanism for the insects to develop insecticide resistance requiring 

the use of higher doses or different insecticides, potentially adding to human and 

environmental health impacts.  
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Vector control is often recognized as interrupting vector borne transmission 

rather than disease eradication or permanent reduction because of the potential for vector 

reemergence or ecological succession (i.e., other vector species replacing a previously 

common vector species) [8]. Vector control through insecticide use is challenging as a 

large-scale solution for the reasons mentioned above and because there simply is not one 

vector for Chagas transmission. There are over 140 species, all within the subfamily 

Triatominae. Epidemiologically important vector species are largely regional and vector 

control is complicated by many factors such as population density and the landscape of a 

region as both contribute to the diversity of vector species in an area.  

The last pitfall of the Southern Cone Initiative to be addressed here is that 

although it reduced the rate and number of new infections, it did not address the 

population of already infected Chagas patients.  Pharmacological advances would address 

both these issues and could be more stable long-term tools in fighting Chagas disease. 

New therapeutics aimed at Chagas need to be developed to improve the ability of 

clinicians to actually treat and possibly one-day cure patients of the disease. Research to 

develop Chagas drugs should be seen as complimenting the progress of vector control 

efforts and provide long term solutions to the existing Chagas patient population and 

offer better outlooks to new Chagas patients. The current pharmacological options 

available to treat Chagas revolve around two drugs Beznidadazole and Nifurtimox both 

of which face similar issues in their effectiveness and ability to manage Chagas long term 

[11]. 
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Human Pathology of Chagas Disease 

Although Chagas disease in humans occurs mainly through vector transmission, 

congenital infection is also possible as well as infecting through blood and organ 

donations [4]. Human Chagas disease has two main phases: acute and chronic. The short 

acute phase, which lasts from a few weeks to months is largely asymptomatic for many 

patients. For symptomatic cases, acute Chagas can present many symptoms including 

fever, edema, swollen lymph nodes (adenopathy) and localized swelling around the 

parasite entry point, also known as a Chagoma or Romaña’s sign. In terms of acute 

Chagas Chagomas is considered the telltale symptom of T. cruzi infection [12]. The 

severity of the acute phase is contingent on many other factors including mode of parasite 

acquisition, patient age, patient overall health and the infecting DTU. The predominance 

of asymptomatic cases of Chagas presents a dilemma as while it is good that the patient is 

not dealing with potential ill health or life-impacting symptoms, it may mask the presence 

of the disease overall. This is problematic as the acute phase is the most efficacious time 

for the current Chagas drugs, Nifurtimox and Benznidazole [13].  

 Once the disease progresses past the acute phase the parasite enters a largely 

asymptomatic indeterminate phase which last 10-30 years after the initial infection. At 

least 30% of patients have the reemergence of symptoms in the chronic phase [12]. 

Progression of chronic disease within humans is somewhat associated with the particular 

genetic strain of the infecting parasite, but in many aspects is poorly understood [14]. 

Chagas disease that reaches the chronic phase mainly affects tissues of three organs; 

cardiac, esophageal, and intestinal. For example, the strain recognized as TcI often 
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progresses to Chagasic cardiomyopathy. While other strains have also been shown to 

cause Chagasic cardiomyopathy these strains have also been linked to megaesophagus 

and megacolon [14]. In this way diagnosing the infecting DTU becomes important to 

predict the prognosis and further development of the disease, and thus may be useful as a 

diagnostic tool.  

 While there is diversity in symptoms, severity, and progression of the disease, 

the therapeutic tools available lack diversity. Chagas disease as mentioned previously is 

treated predominantly with two drug options Nifurtimox and Benznidazole, both of 

which have toxic effects on the patient [15]. For example Benznidazole causes 

neutropenia and Nifurtimox can cause anorexia [16]. Overall, Benznidazole has less 

common but more debilitating side effects such as dermal hypersensitivity and 

polyneuropathy [11]. Another issue with the availability of only these two drugs is the 

possibility of T. cruzi evolving single drug resistance, and the more challenging 

possibility of cross-resistance between the drugs.  One of the proposed contributing 

factors to the evolution of drug resistance is the inability to complete treatment regimens. 

A typical Nifurtimox course is 10mg/kg/day for 60 or 120 days, the long time frame, 

coupled with the side effects of the drug courses have the consequence that drug 

treatments are often abandoned early [16]. Compounding this issue, studies have shown 

cross resistance, the development of resistance to Nifurtimox by T. cruzi includes cross-

resistance to Benznidazole, effectively removing both treatment options for those patients 

[16].  
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This introductory chapter has introduced some of the ecology, pharmacology and 

challenges for reducing Chagas disease. The next chapter explores genetic variation in a 

possible parasite protein trans-sialidase suggested as a possible drug target. 
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Figure 1: Surface anchored trans-sialidase (TS) proteins on the parasite outer 
membrane mediate transfer of sialic acid from the host glycoconjugate to parasite 
surface mucins (sialylation) within a mammal host. The sialylated mucin provides 
parasite protection from the host immune system and helps in parasite adhesion to 
host cells.  TS proteins shed into the host bloodsteam can interact with several cell 
types leading to multiple downstream biological effects. Used with permission from 
Nature Reviews: Microbiology (http://www.nature.com/nrmicro/journal/v4 
/n3/box/nrmicro1351_BX1.html) 
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Chapter 2: The role of natural selection in shaping genetic variation in a 

promising Chagas Disease drug target: Trypanosoma cruzi trans-sialidase 

 

Introduction 

Trypanosoma cruzi is a human pathogen responsible for Chagas Disease, also 

known as American Trypanosomiasis. The disease is endemic in Mexico, Central and 

South America and is currently affecting an estimated 8-10 million people with another 

70 million people at risk [1]. Primarily transmitted by insect vectors of the Triatominae 

sub-family (Hemiptera: Reduviidae), T. cruzi displays complex genetic diversity with 

resulting complexity in its pathogenic effects within and between mammalian species [2]. 

Various approaches have been used to characterize the diversity in T. cruzi with the 

general consensus of six major subdivisions known as known as Discrete Typing Units 

(DTUs) and named TcI – TcVI. A seventh DTU (TcBat), found within TcI has been 

brought to recent attention, as well as a lineage found only in bats, T. cruzi marinkelli, 

that forms a sister group to TcI-TcVI [3].  

This heterogeneity in T. cruzi has been shown to be significant in human Chagas 

Disease as certain progressions of the disease have been linked to particular DTUs. For 

example, TcI has been linked to the development of Chagasic cardiomyopathies, while 

other DTUs have been shown to progress to more gastrointestinal symptoms such as 

megaesophagus [4]. 

 Efforts to reduce autochronous Chagas transmission through vector control have 

been remarkably effective. However, in regions where sylvatic populations exist, vector 

control requires repeated use of insecticides around and within homes and such repeated 
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use of insecticides can have adverse ecological and human health effects as well as lead 

to insecticide resistance [5]. Further, although vector control methods have interrupted 

transmission significantly, they fail to address the growing patient population already 

infected. This combination of factors means that new therapeutics are needed. 

The T. cruzi trans-sialidase (TcTS) receptor gene has been suggested as a 

biological target for a rationally designed Chagas drug [6-8,11-13,18]. This receptor is 

essential for parasite growth, because it is a receptor it can potentially be inhibited [6], 

and it has been implicated in virulence [7]. The TcTS receptor harvests sialic acid from 

the mammal host, a molecule critical for eukaryotic proliferation and survival that is 

produced by mammalian cells but not produced by T. cruzi. Among the 

Trypanosomatidae, which includes other human pathogens such as Trypanosoma brucei 

the etiological agent of African sleeping sickness, only T. cruzi is known to be unable to 

produce sialic acid and thus expresses high levels of the TcTS receptor in the 

trypomastigote stage (the stage infecting vertebrate blood) [7].  The TcTS receptor 

captures sialic acid from the blood of its mammalian host, transferring it to surface 

mucins coating its outer membrane. The sialidated molecule is important in evading 

immune detection [8]. These features of TcTS make it an excellent target for Chagas 

rational drug development [7].  

 Despite the high potential of the TcTS receptor as a target for drug design, high 

throughput screens for potential TcTS inhibitors have been relatively unsuccessful. One 

possible reason could be genetic diversity of the receptor [7].  

The TcTS genes are part of a large superfamily of over 1400 genes containing the 

conserved VTVxNVxLYNR motif [9]. These genes form eight groups, of which only 
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group 1 codes for active trans-sialidases [10] with estimates of 1-32 enzymatically active 

TcTS gene copies per haploid genome [11]. Of the remaining genes about 700 are 

functional but produce inactive TS, and approximately 700 are pseudogenes [7].  

The TcTS protein has an N-terminal catalytic domain (amino acids 1-371) that 

ends in a six bladed beta propeller, an alpha helix (amino acids 372-394) connects the 

catalytic domain to the C-terminal lectin-like domain (amino acids 395-632). Another 

alpha helix near the C-terminus (amino acids 614-626) is sometimes followed by a 

variable repetitive (100-500 amino acids) hydrophilic, 12 residue shed acute phase 

antigen (SAPA) motif [8].  

Within the N-terminal catalytic domain, group I active TcTS differ from inactive 

forms by a single amino acid replacement, Tyr342His. The transfer of sialic acid from 

host to parasite glycoconjugates catalyzed by TcTS (Figure 2.1a) involves an additional 

seven amino acids known to bind to sialic acid. During the transfer reaction, Tyr342 is 

crucial in forming the covalent intermediate resulting from cleaving the sialic acid from 

the host glycoconjugate (Fig 2.1b) before it is transferred to a parasite glycoconjugate 

(Fig 2.1c) [12].  

Identifying and further exploring the genetic diversity of TcTS is important 

towards drug development since the structure and function of proteins has been shown to 

be sensitive to amino acid changes anywhere in a peptide sequence, not just active 

domains (e.g.,[14]), genetic variation in TcTS may affect susceptibility to inhibitors, and 

may need to be considered when evaluating TcTS for rational drug design.  

 Rational drug design incorporates biological information and aims to create 

more effective and longer lasting therapies. Since drugs act as selective agents, it is 
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important to understand the evolutionary processes acting on a drug target [15]. There are 

several statistical tests to determine if DNA sequence variation results from neutral 

processes, or negative or positive selection [15, 16]. Negative, or purifying selection, is 

the removal of disadvantageous mutations. Positive selection, or adaptive evolution, 

includes the increase in frequency of advantageous mutations as well as types of selection 

important in host-parasite interactions such as balancing selection (also called 

heterozygote advantage or overdominance) and negative frequency-dependent selection 

(i.e., rare alleles are favored). These types of selection have different implications for a 

drug target. It has been suggested that positive selection is not beneficial for a drug target 

while negative selection does add to a targets justification [17].  

 We assessed DNA sequence and protein variability in an ~500 bp region of the 

TcTS gene of T. cruzi isolated from the abdomens of Triatoma dimidiata the major insect 

vector in Central America and Mexico and Triatoma nitida, a species with a more 

restricted geographic range that is sometimes found in sympatry with T. dimidiata.  Our 

T. dimidiata specimens were from Guatemala and El Salvador, and the T. nitida from 

Guatemala. We did Sanger sequencing of 48 PCR products (hereafter referred to as 

PCRp). Because TcTS is a nuclear gene and insects could potentially be infected with 

one or more parasite strains and also because TcTS has 1-32 copies per haploid genome, 

for a subset of the insects we cloned the PCR products prior to sequencing (referred to as 

the 10 cloned sequences).  

The region analyzed starts in the N terminal catalytic domain (amino acids 269 to 

371), extends into the alpha helix (372-394) and ends in the C-terminal lectin-like domain 

(amino acids 373 to 434). This region includes four amino acids important in the binding 
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of sialic acid, Pro238, Trp312, Arg314, and Tyr342 (Table 2). The sequence data were 

used to identify the DTU of T. cruzi infecting the insects and verify we were examining 

sequence from the group I active TcTS subfamily. The sequence data were then analyzed 

for natural selection at both the level of the gene and the level of individual amino acids. 

First, the McDonald Kreitman (MK) test, which considers an entire gene or region of 

DNA, was used to test for selection within homogeneous regions (catalytic vs non-

catalytic) [23,24]. Second, we used Selecton, an amino acid site-specific test [26,27]. The 

MK test was only appropriate for testing the cloned sequences, whereas both the cloned 

and 48 PCRp sequences were examined with Selecton.  

 

Results 

The 58 new TcTS sequences from this study belong to group 1, the only one of 

the eight groups in the superfamily with active TS. Examination of the cloned TcTS 

sequences with the MK test indicated significant balancing selection in the catalytic-

domain of the TcTS gene. The variation was not significantly different from a neutral 

model of evolution for the part of the C-terminal lectin-like domain region examined. In 

addition, for both the cloned and PCRp sequences, the test for selection at each individual 

amino acid site found evidence of positive and negative selection within the regions 

examined. Below we present the data supporting these results. 

Confirmation of TcTS sequences as TS group 1 

Phylogenetic analysis indicated that the sequences are from TcTS group 1 genes 

that code for active TS (Fig. 2.2) with strong statistical support (100% bootstrap support). 
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As expected, all 58 sequences from this study had Tyr342, the critical amino acid that 

distinguishes the active and inactive forms of TS. 

 

Tests for natural selection  

The multi-locus MK test indicated the two regions of the TcTS gene were 

heterogeneous (Table 1b, wMK = 2.077, c2 = 6.205, p < 0.02). We therefore analyzed each 

region separately with the standard MK test.  

We detected statistically significant negative and/or balancing selection in the 

catalytic domain (Table 2, Neutrality index NI = 4.940, c2 = 14.348, p < 0.001). 

Examination of the contingency table (Table 2) shows a higher number of non-

synonymous polymorphisms than synonymous substitutions for this region (Pn = 15 > Ps 

= 8) suggesting balancing selection. 

For the non-catalytic region that included the alpha helix and part of the C-

terminal lectin-like domain, the pattern of variation is consistent with the neutral model 

of evolution (Table 3c, Neutrality index NI = 1.091, c2 = 0.047, p > 0.05).   

The test using Selecton that examined selection at each individual amino acid, 

showed evidence of both positive and negative selection over the region examined (Fig 

2.3). Among the 166 amino acids studied, Selecton identified 59 sites of positive 

selection, including both directional and balancing selection, 81 sites of purifying 

selection and 26 neutral sites. Overall the model including positive selection is a better fit 

to the data than the null model that includes only purifying selection and neutral 

synonymous changes (log likelihood -1227.73, delta-log-likelihood -3.35, p-value < 

0.02). 
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The conservation metric (Fig 2.3) provides an estimate of variation for a 

particular amino acid. Over the region examined, the conservation metric ranges from 0.5 

to 1, with an average value of 0.962. The catalytic domain showed higher average 

conservation (0.982) than the non-catalytic region (0.930).  

Selecton values span the possible range (1 indicates strongest positive, 4 is 

neutral, 7 is strongest purifying). The average selection value over the region examined 

was 4.361, the catalytic region was toward more purifying selection (average of 4.767) 

while the non-catalytic region indicated more positive selection (average of 3.398).  

With respect to the amino acids essential to catalytic activity, sites 283, 342 and 

357 showed negative selection, having both high conservation values and Selecton 

values. Site 314 showed evidence of positive or balancing selection indicated by high 

polymorphism (low conservation) and low Selecton scores, while site 312 was neutral.  

 Comparison of the Selecton values of the 10 clones with the 48 PCRp sequences 

shows the PCRp sequences show fewer sites of positive selection (Fig. 2.4). The selecton 

results of the PCRp sequences identified only 49 positively selected sites, 26 neutral sites, 

and 91 negatively selected sites. The average selecton value for the entire region 

examined was 4.6506, as well using the same division in the sequence as above, the 

catalytic region was more indicating of purifying selection (average of 4.9417) than the 

non-catalytic region (average of 4.1746). Similarly, the average conservation score for 

the entire region analyzed was 0.9564. While the catalytic domain region again showed 

higher conservation (0.9776) than the non-catalytic region (0.9216). 
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Discussion  

In this study analyzing how natural selection and genetic variation in the TcTS 

gene might affect its potential for rational drug design for our cloned sequences we found 

no DNA or amino acid variation at most of the sites essential to catalytic activity, 

however for one site there was significant diversifying or balancing selection. These 

results are explained in detail below.  

In analyzing selection on our sequences, we first confirmed through phylogenetic 

analysis that our PCRp and cloned sequences represent TcTS protein group 1. This is 

important since TcTS group 1 is the only group within the trans-sialidase protein 

superfamily that produces active trans-sialidase.  

 The MK test, which was appropriate only for the cloned sequences, detected 

heterogeneity in selection between the catalytic domain, which showed signs of balancing 

and negative or purifying selection, and the non-catalytic portion of the protein which 

was not significantly different from expectations of a neutral model of evolution.  

Although the MK test detected an overall signal of balancing or negative selection 

across the catalytic domain, detailed analysis of individual amino acids with Selecton 

confirmed the “negative” selection detected by the MK test to be a combination of 

negative and balancing selection. For the non-catalytic region of the protein, the MK test 

could not reject a neutral model of evolution.  

With respect to the amino acids essential to catalytic activity, three of the five 

sites showed signs of negative selection, consistent with the explanation of low variation 

because most mutations are deleterious and recessive and are removed by selection or 

linger in the population at low frequency (e.g., sites 283, 342 and 357). However, 
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although most amino acids critical to protein function are under negative selection, one 

site 314 indicated balancing selection while site 312 has a neutral selecton value.  

Analysis with Selecton shows quite a few amino acids under positive (balancing) 

selection in the C-terminal domain, 24 showed positive selection, 12 sites neutral and 27 

sites showed negative selection.   

For the case of the variation at Arg314, there is variation within the clonal 

sequences for one sample. However, the all other clonal samples and the 48 PCRp 

sequences are conserved for this site with no DNA variation.  

Viewing the Selecton values on the 3D structure can help to identify how 

selection is distributed structurally. Projection of the selecton scores on the 3D structure 

of the protein (Fig. 2.4) reveals that the region of the catalytic domain sequenced in this 

study contains 60 of the overall 81 negatively selected sites indicating that there is strong 

constraint on the TcTS structure.  

A multiple sequence alignment (MSA) was constructed with the PCRp and clone 

sequences combined with Genbank reference samples spanning all eight TS gene and 

pseudogene groups. The MSA facilitates examination of the amino acids essential to 

catalytic activity in the region sequenced in this study (S1). Among the 58 PCRp and 

Clone samples there is no DNA variation for three of the amino acids essential to TS 

transfer activity. In contrast, TS groups 2-8 show some significant variation at these sites. 

The amino acid variation at these sites was not conserved with any discernable pattern, 

that is TS groups 2 - 8 did not have distinct variation based on the respective TS group, 

and no pattern was discernable based on the taxa of the sequences.  
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How do these results inform rational drug design? Regions of purifying selection 

are considered strong targets. We detect strong negative selection for the amino acid that 

distinguishes active and inactive TcTS, Tyr342.  

In contrast, regions of positive selection indicating adaptive evolution are not 

desirable drug targets. This is because positively selected regions show variability and the 

potential of the parasite to develop drug resistance. Drug targets should avoid positively 

selected amino acids such as Arg314, an amino acid important in the carboxylation step 

of TcTS activity.   

 Drug design should work to develop inhibitors acting specifically at sites such as 

Tyr342 that are crucial to the protein function and under negative (purifying) selection. 

Specificity ensures an inhibitor is acting on the desired amino acid residue and can be 

measured experimentally. A promising inhibitor believed to be specific for Tyr342 could 

tested by mutating or removing Tyr342 (e.g., through site-directed mutagenesis) and 

determining if the inhibitor exhibits lower affinity. For example, a recent study using 

drug repositioning to identify possible trypanocidal agents acting on TcTS [18] could also 

test the specificity of promising compounds with respect to identified critical and 

negatively selected amino acids. Trypanocidal agents specific to sites under negative 

selection would be preferential for long term drug efficacy than ones specific to sites 

under positive selection. Drug development for Chagas disease may consider not only 

anti-parasitic drugs but also anti-virulent drugs. 

In summary, this study analyzing natural selection and genetic variation in the 

TcTS gene identified regions of purifying, balancing and positive selection in the TcTS 



www.manaraa.com

 21 

protein. Rational drug design should consider this variation to increase the likelihood of 

developing effective drugs with lower chances for the evolution of drug resistance.  

 

Methods 

Insect vectors, DNA isolation, PCR and sequencing 

 We examined parasites from two species of insect vectors, Triatoma dimidiata 

and Triatoma nitida (Table 1). The T. dimidiata were collected from three departments 

(Huehuetenango, Quiche and Jutiapa) in Guatemala and four in El Salvador (Morazan, 

Santa Ana, Ahuachapan, Sonsonate). The T. nitida were from two departments in 

Guatemala (Huehuetenango and Chiquimula). 

The T. cruzi DNA was extracted from the last two segments of each insect 

abdomen using previously described methods [19]. The PCR amplification used primers 

(TS 31: TCACGCAGCGGTACGCATCCT, TS 51: GGAGGCTGTCGGCACGCTCTC) 

specific to group I TS genes that make active trans-sialidases [11].  The PCR conditions 

were as previously reported [11] and PCR results were confirmed via gel electrophoresis. 

Samples showing the appropriate size PCR product were sequenced by a commercial 

facility (Genewiz, South Plainfield, NJ). 

The PCR reaction amplified 540 bp and we analyzed a fragment coding for 166 

amino acids of the TcTS protein. The region analyzed includes five amino acid residues 

identified as important to the function and structure of the protein (Table 2): Pro238, 

Trp312, Arg314,  Tyr342 and Glu357 [8] including the critical amino acid Tyr342His 

that distinguishes the active and inactive forms, but not including the conserved 

VTVxNVxLYNR motif [9].  
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 The sequence files were trimmed to 498 bp removing the primer regions and 

edited using Sequencher (V5). Heterozygous peaks were evidence of polymorphism 

within an insect vector. Two insect vectors were selected for cloning to resolve the 

heterozygous peaks and identify haplotypes. We cloned fresh TcTS PCR product using 

the pGEM-T Easy cloning kit (Promega) following the manufacturer’s instructions for 

both ligation and transformation, specifically using the pGEM-T Easy Vector, T4 DNA 

Ligase, and JM109 High Efficiency Competent Cells (Promega). In order to confirm the 

success of the transformation both ampicillin selection and a blue-white screen were 

used. Harvested white colonies were boiled to lyse the cells and extract DNA which was 

then PCR- amplified and sequenced as described above. The cloned sequences are 

hereafter referred to as such. The non-cloned, PCR product sequences are referred to as 

PCRp hereafter.  

 

Confirmation of TcTS sequences as TS group 1 

Our cloned and PCRp sequences were combined with GenBank TcTS sequences 

and other Trypanosoma species trans-sialidase sequences (Table 1) for a total of 102 

sequences; 58 new from this study and 34 from Genbank. The 58 sequences from this 

study include 48 PCRp sequences and 10 cloned sequences (four from one and six from a 

second of the 48 PCRp sequences).  

 

Phylogenetic analysis was used to confirm the TcTS group of the 58 sequences 

new from this study by comparison with reference sequences [9]. The sequences were 

aligned with ClustalW in MEGA (V7) and translated into amino acid sequences based on 
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GenBank reference sequences. Alignment and translation was performed with T-Coffee 

[20-22]. 

The sequences were analyzed in ProtTest (V2.4) to identify the best model 

parameters for construction of the phylogenetic tree.  RaxML(V8.0.0) was used to 

construct the phylogeny within the CIPRES Science Gateway V3.3 server combined with 

bootstrapping to quantify branch support. The optimal tree output was then drawn in 

FigTree (V1.4.3). 

 

Tests for natural selection  

Two tests were done to determine the role of natural selection in TcTS DNA 

sequence variation and evolution, specifically, the McDonald-Kretiman (MK) test [23,24] 

which considers an entire gene (or portion) and Selecton, an amino acid site-specific test 

[26,27]. The 10 cloned sequences were examined with both the MK test and Selecton. 

Because of the ambiguous nucleotide sites, the 48 PCRp sequences could only be 

examined with Selecton. 

To examine the role of neutral vs selective processes for the cloned sequences we 

used an online version for the MK test [23, 24]. Trypanosoma brucei group 1 TS 

(AF310232) was used as the outgroup [9]. The MK test assumes homogeneity across the 

gene, but because different regions of the TS gene may evolve differently, we used the 

multi-locus MK test to test for heterogeneity of part of the region with the N terminal 

catalytic domain (amino acids 269 to 371) compared to the region with the alpha helix 

(372-394) and part of the C-terminal lectin-like domain region (amino acids 373 to 434). 

Then we used the standard MK test to test for selection within homogeneous regions.  
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The MK test compares the within (polymorphic) T. cruzi non-synonymous to 

synonymous (neutral) changes (Pn/Ps [19]) to the between species (divergent) T. cruzi - 

T. brucei non-synonymous to synonymous changes (Dn/Ds) using a Chi-square test. The 

Neutrality Index (NI) indicates the strength of departure from the neutral model [25]: 1 

indicates the data are consistent with a neutral model of evolution, > 1 indicates either Dn 

is lower than expected due to purifying selection against harmful mutations or Pn is 

higher than expected due to balancing selection, and < 1 indicates Dn is high due to an 

excess of fixation of non-neutral replacements from adaptive evolution or Ps is low [25].  

In addition, selection at each individual amino acid site was examined and 

correlated with the protein structure using the Selecton 2007 online server 

(http://selecton.tau.ac.il/)[26, 27] . The test used Bayesian inference to calculate the 

dN/dS ratio and used a likelihood ratio test to compare a model with positive selection 

(their M8) with a null model (M8a) that assumes only purifying selection and neutral 

changes. The selection values for each amino acid ranged from 1 ( strong negative 

selection) to 7 (strong positive selection) and were projected on the 3D structure of the 

protein using the tool First Glance in Jmol (FGiJ, http://firstglance.jmol.org, PDB 1S0I) 

implemented in Selecton [26, 27]. 

In interpreting the results, for the MK test, NI < 1 (“positive” selection) refers to 

adaptive evolution through directional selection; whereas NI > 1 (“negative” selection) 

includes both purifying and balancing selection. For the Selecton test, negative selection 

refers to purifying selection, while positive selection refers to adaptive evolution through 

directional and balancing selection.   
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Finally, to compare the variation among the cloned sequences with the variation 

among the PCRp sequences, we calculated the conservation for each amino acid, on a 

scale of 0 to 1, where no variation = 1. Using the most common amino acid at each site as 

the reference, each amino acid was assigned a value of 1 if was identical to the reference, 

0.5 if the variation did not change the amino acid class (e.g., polar to polar or negative 

charge to negative charge), and 0 if the variation caused a substitution of a different 

amino acid class (e.g., polar to negative charge). The sum for each site was divided by the 

number of total sequences (10 for clones and 48 for PCRp) creating a conservation score 

between 0 and 1 for each site. 
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Table 1: Comprehensive list of newly sequenced samples and Genbank reference samples 
used in this study. 

 

 

Species Sample or Isolate ID Vector Species TS Protein Group Country collected Department Latitude (N) Longitude (W) Accession Number
Trypanosoma cruzi A10050-TS Triatoma dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 21´30.815¨ 91° 27´5.12¨
T. cruzi A10051-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 21´30.815¨ 91° 27´5.12¨
T. cruzi A10052-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 21´30.815¨ 91° 27´5.12¨
T. cruzi A10053-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 21´30.815¨ 91° 27´5.12¨
T. cruzi A10054-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A10055-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A10062-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15°24′00″ 91°58′00″
T. cruzi A10063-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15°24′00″ 91°58′00″
T. cruzi A10067-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 40´46.271¨ 91° 49´7.159¨
T. cruzi A10071-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 21´30.815¨ 91° 27´5.12¨
T. cruzi A10083-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A10227-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A10230-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 39´ 5.85¨ 91° 46´16.903¨
T. cruzi A10231-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 39´ 5.85¨ 91° 46´16.903¨
T. cruzi A10232-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 39´ 5.85¨ 91° 46´16.903¨
T. cruzi A10250-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15°20′35″ 91°18′42″
T. cruzi A10304-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A10305-TS Triatoma nitida TS group 1 ( T. cruzi clade) Guatemala Huehuetenango 15° 19´10.709¨ 91° 29´ 32.358¨
T. cruzi A10308-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A10311-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A10313-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Huehuetenango
T. cruzi A8974-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Quiche 14° 55´23.401¨ 90° 39´45.567¨
T. cruzi A9948-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Jutiapa 14° 16´44.899¨ 89° 52´31.972¨ 
T. cruzi A9950-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Jutiapa 14° 16´44.899¨ 89° 52´31.972¨ 
T. cruzi FER530-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Morazan 13	55'	46"	N 88	11'	12"	W
T. cruzi FER535-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Morazan 14°04'49.0"			 89°32'09.9"		
T. cruzi S234-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 14°03'54.6"			 89°31'46.3"		
T. cruzi S236-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 14°03'54.6"			 89°31'46.3"		
T. cruzi S238-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 14°03'54.6"			 89°31'46.3"		
T. cruzi S328-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Ahuachapan 13° 58' 0" 89° 49' 0"
T. cruzi S354-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Sonsonate 13° 42' 0"  89° 37' 0"
T. cruzi S384-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Ahuachapan 13° 58' 0" 89° 49' 0"
T. cruzi S445-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Sonsonate 13° 45' 43" 89° 31' 36"
T. cruzi S448-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Sonsonate 13° 45' 43" 89° 31' 36"
T. cruzi S455-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador Sonsonate 13° 45' 43" 89° 31' 36"
T. cruzi S478-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 13° 52´ 59¨ 89° 28´ 59¨
T. cruzi S486-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 13° 52´ 59¨ 89° 28´ 59¨
T. cruzi S507b-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 13° 52´ 59¨ 89° 28´ 59¨
T. cruzi TPG1019-TS T. nitida TS group 1 ( T. cruzi clade) Guatemala Chiquimula 14° 41´36¨ 89° 22´23.4¨
T. cruzi TPG891-TS T. nitida TS group 1 ( T. cruzi clade) Guatemala Chiquimula 14° 41´36¨ 89° 22´23.4¨
T. cruzi TPG892-TS T. nitida TS group 1 ( T. cruzi clade) Guatemala Chiquimula 14° 41´36¨ 89° 22´23.4¨
T. cruzi TPG1239-TS T. nitida TS group 1 ( T. cruzi clade) Guatemala Chiquimula 14° 41´36¨ 89° 22´23.4¨
T. cruzi TPG1247-TS T. nitida TS group 1 ( T. cruzi clade) Guatemala Chiquimula 14° 41´36¨ 89° 22´23.4¨
T. cruzi TPG761-TS T. dimidiata TS group 1 ( T. cruzi clade) Guatemala Chiquimula 14° 43´18.36¨ 89° 16´31.32¨
T. cruzi TPS053-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 14°03'54.6"			 89°31'46.3"		
T. cruzi TPS180-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 14° 6' 0" 89° 27' 0"
T. cruzi TPS400-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 14° 6' 0" 89° 27' 0"
T. cruzi TPS68-TS T. dimidiata TS group 1 ( T. cruzi clade) ElSalvador SantaAna 14°4'45" 89°31'54"
Control  Samples
T. cruzi TcCM187-TS TS group 1 ( T. cruzi clade)
T. cruzi TcI-TS TS group 1 ( T. cruzi clade)
T. cruzi TcV-TS TS group 1 ( T. cruzi clade)
T. cruzi TcVI-TS TS group 1 ( T. cruzi clade)
Clonal Samples
T. cruzi A9950_RE1 TS group 1 ( T. cruzi clade)
T. cruzi A9950_RE2 TS group 1 ( T. cruzi clade)
T. cruzi A9950_RE3 TS group 1 ( T. cruzi clade)
T. cruzi A9950_RE7 TS group 1 ( T. cruzi clade)
T. cruzi A9950_RE8 TS group 1 ( T. cruzi clade)
T. cruzi A9950_RE12 TS group 1 ( T. cruzi clade)
T. cruzi A10055_RE2 TS group 1 ( T. cruzi clade)
T. cruzi A10055_RE4 TS group 1 ( T. cruzi clade)
T. cruzi A10055_RE5 TS group 1 ( T. cruzi clade)
T. cruzi A10055_RE7 TS group 1 ( T. cruzi clade)
Genbank Samples Accession	number
T.	cruzi G/TCC30 Opossum TS	group	2 Brazil EF154827
T.	cruzi G/TCC31 Opossum TS	group	2 Brazil AF426132
T.	cruzi CA-I H.	sapiens TS	group	1 Argentina X57235
T.	cruzi CL Triatoma	infestans TS	group	7 Brazil X70948
T.	cruzi CL T.	infestans TS	group	2 Brazil AF128843
T.	cruzi CL	Brener T.	infestans TS	group	2 Brazil XM_799078
T.	cruzi CL	Brener T.	infestans TS	group	5 Brazil XM_800086
T.	cruzi CL	Brener T.	infestans TS	group	2 Brazil XM_800788
T.	cruzi CL	Brener T.	infestans TS	group	1 Brazil XM_802406
T.	cruzi CL	Brener T.	infestans TS	group	3 Brazil XM_802711
T.	cruzi CL	Brener T.	infestans TS	group	4 Brazil XM_803072
T.	cruzi CL	Brener T.	infestans TS	group	6 Brazil XM_803086
T.	cruzi CL	Brener T.	infestans TS	group	5 Brazil XM_803518
T.	cruzi CL	Brener T.	infestans TS	group	2 Brazil XM_805296
T.	cruzi CL	Brener T.	infestans TS	group	7 Brazil XM_805583
T.	cruzi CL	Brener T.	infestans TS	group	4 Brazil XM_806976
T.	cruzi CL	Brener T.	infestans TS	group	8 Brazil XM_807627
T.	cruzi CL	Brener T.	infestans TS	group	1 Brazil XM_808522
T.	cruzi CL	Brener T.	infestans TS	group	8 Brazil XM_808523
T.	cruzi CL	Brener T.	infestans TS	group	6 Brazil XM_809532
T.	cruzi CL	Brener T.	infestans TS	group	4 Brazil XM_810613
T.	cruzi CL	Brener T.	infestans TS	group	2 Brazil XM_812072
T.	cruzi CL	Brener T.	infestans TS	group	2 Brazil XM_811278
T.	cruzi CL	Brener T.	infestans TS	group	2 Brazil XM_811657
T.	cruzi CL	Brener T.	infestans TS	group	3 Brazil XM_814626
T.	rangeli DOG82 Dog TS	group	2 Venezuela FJ404802
T.	rangeli DOG83 Dog TS	group	2 Venezuela FJ404803
T.	rangeli DOG84 Dog TS	group	2 Venezuela AF426022
T.	rangeli Choachi R.	prolixus TS	group	8 Colombia KC544946
T.	rangeli Choachi R.	prolixus TS	group	5 Colombia KC544956
T.	Brucei TREU927 Glossina	sp TS	group	1 Kenya XM_842470
T.	Brucei EATRO	427 Sheep TS	group	1 Uganda AF310232
T.	carassii cyprinid	fish TS	group	1 AY142111
T.	grayi ANR4 G.	palpalis	gambiensis TS	group	1 Gambia XM_009317479
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Table 2: Genetic variation and selection for the TcTS amino acids essential to catalytic 
activity in the region sequenced in this study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Residue	 Possible	Role	 Clone	Variation Clone	Selection PCRp	Variation PCRp	Selection
Pro	283 Transglycosylation/Hydroxylation	 None Purifying None Purifying
Trp	312 Aromatic	Sandwich/Hydrogen	Bonding None Positive None Purifying
Arg	314 Carboxylate	Fixation Non-synonymous Neutral None Purifying
Tyr	342 Enzymatic	Nucleophile None Purifying None Purifying
Glu	357 Catalysis	 None Purifying None Purifying
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Table 3: Results of multi-locus McDonald Kreitman test for the N-terminal catalytic 
domain as region 1 and the alpha helix domain and C-terminal lectin like domain as region 
2  

 

 

 

 

 

 

 

 

 

McDonald	Kretiman	Test

Multi-locus	MK	Results
Polymorphism Divergence Total Neutrality	Index c2  p-value

Region	1 Neutral 8 209.8 217.8
Non-neutral 15 79.62 94.62
Total	 23 289.42 312.42

Polymorphism Divergence Total Neutrality	Index c2  p-value
Region	2 Neutral 13 32.76 45.76

Non-neutral 26 60.04 86.04 1.091 0.047 0.828
Total	 39 92.8 131.8

Multi-Locus Mantel-Haenszel

c2  p-value
Mantel-Haenszel	
Test	of	homogeneity

Mantel-Haenszel	 Neutrality	Index c2  p-value
Estimator

4.94 14.348 <0.000

6.205 0.012

2.077 6.047 0.013
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Fig 2.1 Chemical reaction catalyzed by Trypanosoma cruzi trans sialidase (TcTS)..  
Mechanism of removal of sialic acid from host, creating a stable covalent intermediate. 
Used with permission from: 
http://pubs.rsc.org/en/content/articlehtml/2011/OB/C0OB00826E#imgfig1 
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Fig 2.2 Best Maximum Likelihood tree reconstruction for the trans-sialidase (TS) protein 
family constructed from T. cruzi TS samples and GenBank reference samples for each 
representative group for the TS protein family. Boostrap values (0-100) are indicated at 
branch nodes. 
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*	All	samples	unique	to	this	study	resolve	in	TS	Group	1.	See	Table	1	for	list	of	samples.
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Fig 2.3 
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Fig 2.3 Summary of results, showing DNA and amino acid sequence variation, and 
results of the analysis of Selecton test for natural selection. Based on analysis of the 10 
clone sequences. Rows (identified with ALL CAPITAL LETTERS) indicate: 
SELECTON, the Selecton score (Orange is strong positive selection, light pink is neutral 
and purple is strong negative selection); POSITION, the amino acid position in the TcTS 
protein (our sequences cover amino acids 269-434); AA, the amino acid for each of the 
10 clones; and DNA, the corresponding nucleotides for each amino acid. The blue line 
shows the Selecton score for each amino acid with the red horizontal line indicating 
neutral evolution or no selection. The blue histograms show the conservation of each 
amino acid site (1 = no variation, 0 = all sites unique).  
 
 
 

 
 
Fig. 2.4 Comparison of Selection values between the clone and 48 PCRp sequences. 
Orange indicates strong positive selection, yellow is neutral and magenta is strong 
negative selection.The catalytic region is outlined in green and the non-catalytic region is 
outlined by red. 
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Fig. 2.5 Three-dimension projection of Trypanosoma cruzi trans-sialidase (TcTS) 
molecule with amino acids shaded to indicate Selection values. A. N-terminal catalytic 
domain. B. alpha-helix domain, C. C-terminal lectin-like domain. D. Highlight of 
aromatic sandwich (Trp312) of the catalytic domain.  
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